Multidimensional sound spatialization by means of chaotic dynamical systems
نویسندگان
چکیده
We present an instrument that explores an algorithmic sound spatialization system developed with the SuperCollider programming language. We consider the implementation of spatial multidimensional panning through the simultaneous use of polygonal shaped horizontal and vertical loudspeaker array. This framework uses chaotic dynamical systems to generate discrete data series from the orbit of any specific system, which in this case is the logistic equation. The orbits will create the path of the general panning structure form vectors of R, containing entries from data series of different orbits from a specific dynamical system. Such vectors, called system vectors and create ordered paths between those points or system vectors. Finally, interpolating that result with a fixed sample value, we obtain specific and independent multidimensional panning trajectories for each speaker array and for any number of sound sources.
منابع مشابه
A numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملLI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملDynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملDynamical behavior and synchronization of chaotic chemical reactors model
In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numeri...
متن کاملChaotic Diffusion in Multidimensional Conservative Maps
In the present paper, we provide results and discussions concerning the processes that lead to local and global chaotic diffusion in the phase space of multidimensional conservative systems. We investigate and provide a measure of the extent of the domain over which diffusion may occur. All these issues are thoroughly discussed by dealing with a multidimensional conservative map that would be r...
متن کامل